• 提示詞給的資訊越多,就越有機會用繪圖 AI 生成想要的客製化圖片。 圖|研之有物(資料來源|Midjourney)
  • 生成對抗網路的概念比喻圖,生成網路與鑑別網路這兩組神經網路會相互訓練,生成網路所產出的圖片會越來越接近鑑別網路的目標,差異越來越小。 圖|研之有物(資料來源|李宏毅)
  • 擴散模型透過加噪和去噪來訓練模型,利用去噪來生成圖片。實際生成圖片的過程,就是逐步去除噪聲的過程。 圖|研之有物(資料來源|李宏毅)
  • 對抗樣本是防禦深偽模型的有效手段,干擾深偽模型的影像生成。 圖|研之有物
  • 陳駿丞笑著說,在發表深偽偵測的研究內容之後,偽造資訊的一方肯定又會想辦法繞過,這是一場永無止盡的攻防戰。 圖|研之有物
  • 陳駿丞與實驗室成員合影。未來他們將和國網中心合作,正式推出深偽偵測辨識平台。 圖|研之有物
1
  • 提示詞給的資訊越多,就越有機會用繪圖 AI 生成想要的客製化圖片。 圖|研之有物(資料來源|Midjourney)

  • 生成對抗網路的概念比喻圖,生成網路與鑑別網路這兩組神經網路會相互訓練,生成網路所產出的圖片會越來越接近鑑別網路的目標,差異越來越小。 圖|研之有物(資料來源|李宏毅)

  • 擴散模型透過加噪和去噪來訓練模型,利用去噪來生成圖片。實際生成圖片的過程,就是逐步去除噪聲的過程。 圖|研之有物(資料來源|李宏毅)

  • 對抗樣本是防禦深偽模型的有效手段,干擾深偽模型的影像生成。 圖|研之有物

  • 陳駿丞笑著說,在發表深偽偵測的研究內容之後,偽造資訊的一方肯定又會想辦法繞過,這是一場永無止盡的攻防戰。 圖|研之有物

  • 陳駿丞與實驗室成員合影。未來他們將和國網中心合作,正式推出深偽偵測辨識平台。 圖|研之有物

Share

AD