• 圖片為熱電材料的基本特性。同一個熱電材料,若給予兩端溫度差可以產生電壓(西貝克效應);若給予兩端電壓則會造成溫度差(皮爾特效應)。 圖│研之有物(資料來源│陳洋元)
  • 半導體材料是良好的熱電材料,依據摻雜的元素種類,可分為 n 型(電流載子為電子,帶負電)與 p 型(電流載子為電洞,帶正電),製作熱電材料時,會將 n、p 型材料組合成上圖「熱電偶」的形式。 圖│研之有物(資料來源│陳洋元)
  • 各種 p 型(左)、n 型(右)材料的 ZT 值與溫度關係圖。可以看到接近室溫(27°C,約300K)表現最好的材料為 p 型的 BiSbTe(藍色折線)。 圖│陳洋元
  • 圖片為「疊差」缺陷。對於熱電材料來說,為了降低導熱率,理想上可利用「疊差」來調控材料內部「缺陷」,最終目的是導熱變差,卻能保有良好的導電率。 圖│研之有物(資料來源│陳洋元)
  • 薄型熱電晶片內包含了 128 對 p 型、n 型半導體,具有輕巧的外形。 圖│陳洋元
1
  • 圖片為熱電材料的基本特性。同一個熱電材料,若給予兩端溫度差可以產生電壓(西貝克效應);若給予兩端電壓則會造成溫度差(皮爾特效應)。 圖│研之有物(資料來源│陳洋元)

  • 半導體材料是良好的熱電材料,依據摻雜的元素種類,可分為 n 型(電流載子為電子,帶負電)與 p 型(電流載子為電洞,帶正電),製作熱電材料時,會將 n、p 型材料組合成上圖「熱電偶」的形式。 圖│研之有物(資料來源│陳洋元)

  • 各種 p 型(左)、n 型(右)材料的 ZT 值與溫度關係圖。可以看到接近室溫(27°C,約300K)表現最好的材料為 p 型的 BiSbTe(藍色折線)。 圖│陳洋元

  • 圖片為「疊差」缺陷。對於熱電材料來說,為了降低導熱率,理想上可利用「疊差」來調控材料內部「缺陷」,最終目的是導熱變差,卻能保有良好的導電率。 圖│研之有物(資料來源│陳洋元)

  • 薄型熱電晶片內包含了 128 對 p 型、n 型半導體,具有輕巧的外形。 圖│陳洋元

Share

AD